Electronegativity, symbol χ (the Greek letter chi), is a chemical property that describes the tendency of an atom or a functional group to attract electrons (or electron density) towards itself and thus the tendency to form negative ions.[1] An atom's electronegativity is affected by both its atomic number and the distance that its valence electrons reside from the charged nucleus. The higher the associated electronegativity number, the more an element or compound attracts electrons towards it. First proposed by Linus Pauling in 1932 as a development of valence bond theory,[2] it has been shown to correlate with a number of other chemical properties. Electronegativity cannot be directly measured and must be calculated from other atomic or molecular properties. Several methods of calculation have been proposed and, although there may be small differences in the numerical values of the electronegativity, all methods show the same periodic trends between elements.
The most commonly used method of calculation is that originally proposed by Pauling. This gives a dimensionless quantity, commonly referred to as the Pauling scale, on a relative scale running from around 0.7 to 3.98 (hydrogen = 2.20). When other methods of calculation are used, it is conventional (although not obligatory) to quote the results on a scale that covers the same range of numerical values: this is known as an electronegativity in Pauling units.
Electronegativity, as it is usually calculated, is not strictly an atomic property, but rather a property of an atom in a molecule:[3] the equivalent property of a free atom is its electron affinity. It is to be expected that the electronegativity of an element will vary with its chemical environment,[4] but it is usually considered to be a transferable property, that is to say that similar values will be valid in a variety of situations. The opposite of electronegativity is electropositivity: a measure of an element's ability to donate electrons.
florence guided tour
peppermint oil mice